

RAPID (AND PRECISE) COVID-19 VACCINE DEVELOPMENT

"Humanity has but three great enemies: fever, famine, and war; of these by far the greatest, by far the most terrible, is fever."

Sir William Osler, M.D.

Global Vaccine and Immunization Research Forum February 4, 2021

Barney S. Graham, MD, PhD

@BarneyGrahamMD

Deputy Director

Vaccine Research Center, NIAID, NIH

NIAID Vaccine Research Center

Commencement Address by President Clinton at Morgan State University, Baltimore, May 18, 1997

"If America commits to find an AIDS vaccine and we enlist others in our cause, we will do it... Today I'm pleased to announce the National Institutes of

Health will establish a new AIDS vaccine research center dedicated to this crusade."

- AIDS/HIV
- Influenza
- Ebola/Marburg
- RSV
- Malaria
- Tuberculosis
- EID
 - West Nile virus, Zika
 - Chikungunya
 - W/E/V equine encephalitis viruses
 - MERS-CoV, SARS, and other CoV
- Nipah and other paramyxoviruses
- EV-D68 and other picornaviruses
- Smallpox

GLP Analysis

cGMP Manufacturing

Nucleic acid

Vectors

VLPs

Proteins and nanoparticles

Monoclonal antibodies

Clinical Trials

Zoonotic and Vector-borne Viral Threats

AIDS as a Zoonosis: Scientific and Public Health Implications

Beatrice H. Hahn, George M. Shaw, Kevin M. De Cock, Paul M. Sharp

- Hanta virus
- Nipah/Hendra
- West Nile virus
- SARS
- Influenza
- Chikungunya
- Ebola
- MERS
- Zika
- EV-D68
- SARS-CoV-2

Public health burden of re-emerging & emerging viruses

Traditional Approaches

- Licensed vaccines/antibiotics
- Passive surveillance
- Contact tracing
 - Quarantine

- Emerging virue

Vaccine

Challenges

- Emerging viruses
- Vaccines for unmet needs
- Improving licensed vaccines

New Technologies Facilitate an Engineering Approach

New Technologies

- Structural biology
- Protein engineering
- Single cell sorting and analysis
- High throughput sequencing
- Rapid isolation of human mAbs
- Antibody lineage analysis
- Rapid diagnostic tools
- Systems biology
- Gene-based delivery
- Rapid gene synthesis
- Platform manufacturing

Technology Advances Make New Vaccines Possible

Viral Vaccines

Major Conceptual and Technological Advances

Structural analysis of antigenic sites on viral surface glycoproteins

Isolation of human monoclonal antibodies from single B cells

Sequencing for viral diversity and escape mutations

Sequencing B cells to define clonal lineages; TCR & BCR-specific transcriptome

Preserving Apical Epitopes Improves Immunogenicity

Functional form of RSV F in pretriggered conformation

RSV Prefusion F Structure (Science April 2013)

Pre-F Vaccine Clinical Trial (Science August 2019)

Class I Fusion Glycoproteins

Technologies that Support Pandemic Preparedness & Response

- Structure-based vaccine design
- Single-cell sorting, sequencing, and bioinformatics
 - Rapid isolation of human mAbs
 - Definition of antibody lineages
 - Analysis of immune responses
- Protein engineering of self-assembling nanoparticles
- Rapid DNA synthesis
- Recombinant DNA and genetic engineering technology
 - Rapid cell line development
 - Animal model development
- Nucleic acid and vector-based delivery of vaccine antigen

Structural analysis of antigenic sites on viral surface glycoproteins

Precision

Speed

Two Viral Families with Extensive Zoonotic Reservoirs

Paramyxoviridae

Coronaviridae

Structure-guided vaccine antigen design

Stabilized CoV Spike Protein Improve Expression

Pallesen, J.*, Wang, N.*, Corbett, K.*, et. al. PNAS. 2017.

MERS S-2P protects against mouse-adapted MERS CoV challenge in hDPP4 transgenic mice

SARS-CoV-2 Identified as cause of COVID-19

Years of Work Led to Rapid COVID-19 Vaccine Development

SCIENCE | CORONAVIRUS COVERAGE

They spent 12 years solving a puzzle. It yielded the first COVID-19 vaccines.

Long before anyone knew of SARS-CoV-2, a small band of government and university scientists uncovered a prototypical key that unlocked life-saving immunizations.

Readiness for Rapid CoV Countermeasure Development

Precision vaccinology including structurebased vaccine design and protein engineering for RSV and CoV

Human monoclonal antibody discovery

Pre-existing public-private and academic partnerships Prior responses to PHEIC

RSV vaccineenhanced disease pathogenesis

Platform manufacturing technologies

Prototype Pathogen Approach for Pandemic Preparedness and Response

COVID-19 VACCINE & MAB DEVELOPMENT

High Quality Protein is the Beginning for Everything

Therapy

Diagnostics

An mRNA Vaccine against SARS-CoV-2 - Preliminary Report Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates

Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults

Vaccines

Rapid Platform Manufacturing and Precision Antigen Design

Nucleus

Prototype Pathogen Preparedness
Structure-based vaccine design
Protein engineering
Nanoparticle display
High throughput sequencing
Rapid human mAb isolation
Antibody lineage analysis
Rapid synthesis of biologicals
Gene-based antigen delivery

Messenger RNA Vaccines Against SARS-CoV-2

Pandemic Preparedness Scientific Organization

Class I

Paramyxo Pneumo Corona Astro Arena Retro Orthomyxo Filo

Class III and others

Core Functions

Sequencing/synthesis Protein production Structure/Antigen design Antigen display/delivery Animal modeling Pathogenesis and organ-

specific immunology

B cell biology/serology

T cell biology/flow cytometry

Single cell analysis

Computational biology

Bioinformatics

Process development

Pilot manufacturing

Phase I clinical trials

Class II

Toga/Alpha Flavi/hepatitis C Bunyavirales order

Non-enveloped

Picorna (EV-D68)

Polyoma

Papilloma

Calici

Adeno

Parvo

Reo

Hepe

Core functions: Intramural programs and extramural contracts connected to intramural and extramural basic research laboratories

Viral Research Groups:

Organized by viral fusion protein type; combined resources of intramural and extramural investigators

Goals of the Protype Pathogen Approach for Pandemic Preparedness

26 viral families known to infect humans

Develop vaccines for 30 prototype viruses representing those 26 families and genera and take through phase 1

~90 additional viruses from those families known to infect humans with potential for increasing human-to-human transmission and virulence

Develop vaccine candidates for all 90 and take through animal testing

Current approach to prioritization

WHO – Lassa, Nipah, MERS/SARS CoV, Rift Valley fever, Crimean Congo Hemorrhagic fever, Zika, Ebola and Marburg, Pathogen X CEPI – Lassa, Nipah, MERS-CoV

Conclusions

- Rapid pandemic response based on:
 - Prior fundamental basic and translational research
 - Both precision and speed
 - Pre-established public-private partnership
- mRNA-1273 Phase 3 interim VE~95%
- mAb555 therapeutic EUA approved
- Prototype pathogen preparedness is feasible

RML

EMORY

COVID-19 Response: A VRC-wide Effort

Olubukola Abiona

Cassandra Almasri

Gabriela Alvarado

Obrimpong Amoa-Awua

David Ambrozak

Charla Andrews

Sarah Andrews

Eli Boritz

Seyhan Boyoglu-Barnum

Evan Cale

Kevin Carlton

Lauren Chang

Kizzmekia Corbett

Adrian Crenaga

Katie Cunnane

Marybeth Daucher

Anthony DiPiazza

Mitzi Donaldson

Daniel Douek

Naomi Douek

Britta Flach

Dylan Flebbe

Barbara Flynn

Katherine Foulds

Joseph Francica

Jason Gall

Lucio Gama

Rebecca Gillespie

Ingelise Gordon

Barney Graham

Martin Gaudinski

Christina Harris

Christian Hatcher

Ashley Heimann

Marie Hirsch

Geoffrey Hutchinson

Masaru Kanekiyo

Azad Kumar

Peter Kwong

Wing-Pui Kong

Richard Koup

Evan Lamb

Julie Ledgerwood

Kwanyee Leung

Bob C. Lin

Catherine Liu

Rebecca Loomis

Lindsay Longobardi

Mark Louder

John Mascola

Rosemarie Mason

Adrian McDermott

Krisha McKee

John Misasi

Juan Moliva

Damee Moon

Ian Moore

Kaitlyn Morabito

Sandeep Narpala

Richard Nguyen

Nadesh Nji

Amy Noe

Laura Novik

Sarah O'Connell

Sijy O'Dell

Amarendra Pegu

Yuliya Petrova

Emily Phung

Madhu Prabhakaran

Amy Ransier

Mario Roederer

Tracy Ruckwardt

Noemia Santana Lima

Stephen Schmidt

Alec Schrager

Chaim Schramm

Diana Scorpio

Robert Seder

Wei Shi

Erica Smit

Nancy Sullivan

Phillip Swanson

Alison Taylor

I-Ting Teng

John-Paul Todd

Yaroslav Tsybovsky

Lingshu Wang

Anne Werner

Alicia Widge

Eun Sung Yang

Christina Yap

Baoshan Zhang

Yi Zhang

Tongqing Zhou

Cynthia Ziwawo