Nucleic Acid Vaccines *Is it all done?*

Christian W. Mandl, PhD, MD

Emerging platforms: The winner is...

THE PATH TO A COVID-19 VACCINE

...mRNA

Specifically:
Pseudouridinemodified (ΨU),
non-replicating
mRNA formulated
in lipid
nanoparticles

Source: GAVI https://www.gavi.org/vaccineswork/covid-19-vaccine-race (as of Dec 2020)

A brief history of RNA vaccines

(disclaimer: from a personal perspective)

1990	DNA and mRNA express upon injection in mouse muscle						
	Wolff et al., Science 247:1465						
1993	Nucleic acid injection to elicit adaptive immune response DNA: Ulmer et al., Science 259:1745 mRNA: Martinon et al., Eur J Immunol. 23:1719						
1998	Infectious and replicating RNA for vaccination Mandl et al., Nat Med. 4:1438-40						
2000	CureVac founded by Ingmar Hoerr						
2008	Pseudouridine modified mRNA Karikó et al. Molecular therapy 16: 1833						
2012	Lipid nanoparticles for delivery of Self-Amplifying RNA Geall et al. PNAS 109:14604						
2013	First mRNA conference (Tübingen, Germany)						
2017	First clinical ID trials Influenza, Zika (Moderna), Rabies (CureVac)						
2020	EUA for vaccines against SARS-CoV-2 (BioNTech/Pfizer, Modern	a)					

How about DNA?

- Electroporation device has strongly increased immunogenicity and consistency, but limits realworld applicability
- Was leading the race with Zika vaccine (7 months from concept to phase 1)
- For SARS-CoV-2:
 - Phase 1 Neutralization titers after
 2 immunizations were moderate.
 - Currently in phase 2/3

 Tebas, Pablo et al. "Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial." EClinicalMedicine, 100689. 24 Dec. 2020

Leading RNA Vaccines Against SARS-CoV-2

Company	RNA type	Status	Efficacy (%)	RNA Dosage (µg)	Schedule	Storage Temp. (°C)	Other
Pfizer BIONTECH	mRNA (ΨU)	Approved (EUA)	95	30	2 doses (3 weeks)	- 70	
moderna NIH)	mRNA (ΨU)	Approved (EUA)	94	100	2 doses (4 weeks)	- 20 (6 months)	
UREVAC	mRNA	Phase 2b/3	?	12	2 doses (4 weeks)	2 – 8 (3 months)	
ARCTURUS	SAM	Phase 2	?	5 or 7.5	1 or 2 doses	?	Low NT CD8+
Imperial College London	SAM	Phase 1	?	Ş	?	- 70	Halted (Jan 26)
WALVAX 沃森生物 WALVAX BIOTECHNOLOGY CO., LTD.	mRNA	Phase 1/2	?	5 - 25	?	?	China
gritstone	SAM	Phase 1	?	?	?	?	Heterol. boost

Is it all done?

There is plenty of room for innovation

- Thermostability
 - Increase shelf life, eliminate need for deep freezing
- Packaging capacity (RNA/particle)
 - To allow expression of complex antigens or complementing RNAs
- Dose reduction
 - To reduce costs and reactogenicity
- Improve immune response
 - Magnitude and breadth; T cell responses; longivity
- Reduce reactogenicity
 - Local and systemic reactions similar to other licensed vaccines

Innovation: RNA

Source: BioNTech F-1 sec.gov

- Modified versus non-modified RNA
 - Unmodified RNA needs careful dosing
 - Lower doses with non-modified (CureVac: Rabies vaccine at 1 μg)
 - Purification is key
- Self amplifying versus non-replicating RNA
 - Lower dose requirement because of amplification in vivo
 - Stronger T cell responses (CD8)
 - Explore the universe of positive-sense RNA viruses
 - Synthetic replicons (Replicate Bioscience)
 - Trans-amplifying replicons
 - Infectious RNA (dose << 1 μg)

Innovation: RNA

Circular mRNA

- Generated by self-splicing
- By-passes RNA sensors no innate stimulation
- No terminal degradation longer expression

Wesselhoeft, RA et al. Molecular cell 74 (2019): 508

RNA Printer

- CureVac and Tesla joined forces for mobile, decentralized production
- Personalized medicine
- Rapid response

Elon Musk in Berlin Sep 3, 2020; picture: REUTERS

Innovation: Delivery

Lipid nanoparticle delivery has evolved as the gold standard

- Originally developed for small siRNA
- **2012**: Replicons delivered by LNPs (Geall, A. J. et al. *Proc. Natl Acad. Sci. USA* **109**: 14604).
- 2015: Modified mRNA delivered by LNPs (Pardi, N. et al. *J. Control. Release* 217: 345).
- Limitations:
 - Reactogenicity of components (lipids; allergic reactions to PEG?)
 - Limited packaging capacity
 - Limited temperature stability

Source: Pardi et al.,

Nature Reviews Drug Discovery 17: 261 (2018)

Innovation: Dendrimer Delivery

- Adaptable chemistry to meet different application needs
 - Stability
 - Charge density packaging capacity
 - Degradability

Multilamellar nanoparticles ~100-150nm in diameter

Where to go from here? How broad can the technology be?

- Rapid response against emerging pathogens YES
- New viral targets RSV, herpes viruses (complex antigens)
- Non-viral targets bacteria (cannot replace glycoconjugates), parasites
- Replace existing vaccines influenza (will need better immunogenicity), rabies
- Heterologous prime-boost
 - To increase magnitude, breadth and longevity of immune response
 - Reduce reactogenicity
 - Logistically challenging, but pandemic may shift perception: gritstone
- RNA-encoded antibodies (passive immunization, immunotherapy)
- Non communicable disease targets:
 - Cancer vaccines
 - Immunotherapy
 - Cardiovascular
 - Gene editing
 - Gene replacement